

SimbaEngine X version 10.1

Build a Java ODBC Driver for
SQL-Based Data Sources in 5

Days

Last Revised: June 2017

Simba Technologies Inc.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com i

Copyright ©2015 Simba Technologies Inc. All Rights Reserved.

Information in this document is subject to change without notice. Companies, names and data
used in examples herein are fictitious unless otherwise noted. No part of this publication, or the
software it describes, may be reproduced, transmitted, transcribed, stored in a retrieval system,
decompiled, disassembled, reverse-engineered, or translated into any language in any form by
any means for any purpose without the express written permission of Simba Technologies Inc.

Trademarks

Simba, the Simba logo, SimbaEngine, and Simba Technologies are registered
trademarks of Simba Technologies Inc. in Canada, United States and/or other
countries. All other trademarks and/or servicemarks are the property of their respective
owners.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).
Linux is the registered trademark of Linus Torvalds in Canada, United States and/or
other countries.

Mac, Mac OS, and OS X are trademarks or registered trademarks of Apple, Inc. or its
subsidiaries in Canada, United States and/or other countries.

Microsoft SQL Server, SQL Server, Microsoft, MSDN, Windows, Windows Azure,
Windows Server, Windows Vista, and the Windows start button are trademarks or
registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United
States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other
countries.

Solaris is a registered trademark of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

SUSE is a trademark or registered trademark of SUSE LLC or its subsidiaries in
Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in
Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com ii

Contact Us

Simba Technologies Inc.
938 West 8th Avenue
Vancouver, BC Canada
V5Z 1E5

www.simba.com

Telephone +1 (604) 633-0008 sales: extension 2, support: extension 3

Fax +1 (604) 633-0004

Information and product sales: solutions@simba.com

Technical support: support@simba.com

Follow us on Twitter:

@simbatech

mailto:support@simba.com

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com iii

Table of Contents
Introduction ... 1

About SimbaEngine .. 1
About the JavaUltraLight sample driver .. 2
Overview .. 5

Day One – Windows Instructions... 5
Install SimbaEngine .. 5
Components of the JavaUltraLight example driver .. 5
Set environment variables .. 6
Build the native C++ component (UltraLightJNIDSI) ... 6
Build the Java component (JavaUltraLightDSII) .. 7
Update the registry ... 8
Examine the registry keys for SimbaEngine .. 8
Test the data source ... 9
Set up a new project to build your own ODBC driver .. 10
Build the native C++ component ... 11
Build the Java component... 11
Update the registry ... 12
Test your new data source.. 14

Day One – Linux Instructions .. 15
Install SimbaEngine .. 15
Components of the JavaUltraLight example driver .. 15
Build the native C++ component (UltraLightJNIDSI) ... 16
Build the Java component (JavaUltraLight) ... 17
Configure the ODBC data source and ODBC driver.. 18
Test the data source ... 20
Build your new ODBC driver ... 21
Configure an ODBC data source and ODBC driver .. 22
Test your new data source.. 23

Day Two .. 23
Find or create the Java Virtual Machine .. 23
Set the driver name .. 24
Set the driver properties ... 24
Set the logging details .. 24
Check the connection settings .. 24
Establish a connection .. 25

Day Three ... 25
Create and return metadata sources .. 25

Day Four ... 27
Query Execution ... 28

Day Five .. 29
Create a driver configuration dialog .. 30

Appendix A: ODBC Data Source Administrator on Windows 32-Bit vs. 64-Bit 32

Appendix B: Windows Registry 32-Bit vs. 64-Bit ... 33
32-Bit Drivers on 32-Bit Windows ... 33
32-Bit Drivers on 64-Bit Windows ... 34

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com iv

64-Bit Drivers on 64-Bit Windows ... 35

Appendix C: Data Retrieval ... 36

Appendix D: Java Server Configuration .. 38

Third Party Licenses.. 39

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 1

Introduction
This guide will show you how to create your own, custom ODBC driver using SimbaEngine. It
will walk you through the steps to modify and customize the included JavaUltraLight sample
driver. At the end of five days, you will have a read-only driver that connects to your data store.

ODBC is one the most established and widely supported APIs for connecting to and working
with databases. At the heart of the technology is the ODBC driver, which connects an
application to the database. For more information about ODBC, see
http://www.simba.com/odbc.htm. For complete information on the ODBC 3.8 specification, see
the MSDN ODBC Programmer's Reference, available from the Microsoft web site at
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx

About SimbaEngine
SimbaEngine is a complete implementation of the ODBC specification, which provides a
standard interface to which any ODBC enabled application can connect. The libraries of
SimbaEngine hide the complexity of error checking, session management, data conversions
and other low-level implementation details. They expose a simple API, called the Data Store
Interface API or DSI API, which defines the operations needed to access a data store. Full
documentation for SimbaEngine is available on the Simba website at
http://www.simba.com/odbc-sdk-documents.htm.

You use SimbaEngine to create an executable file that will be accessed by common reporting
applications and to access your data store when SimbaEngine executes an SQL statement.
This executable file can be a Windows DLL, a Linux or Unix shared object, a stand-alone server,
or some other form of executable. You create a custom-designed DSI implementation (DSII)
that connects directly to your data source. Then, you create the executable by linking libraries
from SimbaEngine with the DSI implementation that you have written. In the process, the
project files or make files will link in the appropriate SimbaODBC and SimbaEngine libraries to
complete the driver. In the final executable, the components from SimbaEngine take
responsibility for meeting the data access standards while your custom DSI implementation
takes responsibility for accessing your data store and translating it to the DSI API.

http://www.simba.com/odbc.htm
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://www.simba.com/odbc-sdk-documents.htm

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 2

About the JavaUltraLight sample driver
The JavaUltraLight driver is a sample DSI implementation of an ODBC driver, written in Java,
which reads hard coded data. For demonstration purposes, the data is represented by a
hard-coded table object called the Person table, which will always be returned if an executed
query contains the word “SELECT”. If the query does not contain the word “SELECT” then a row
count of 12 rows will be returned.

The JavaUltraLight driver helps you to prototype a DSI implementation for your own data store
so you can learn how SimbaEngine works. You can also use it as the foundation for your
commercial DSI implementation if you are careful to remove the shortcuts and simplifications
that it contains. This is a fast and effective way to get a data access solution to your customers.

Implementation begins with the creation of a DSIDriver class which is responsible for
constructing a DSIEnvironment. This in turn is used to construct a connection object
(DSIConnection implementation) which can then be used for constructing statements
(DSIStatement implementations). This is summarized in Figure 1:

Figure 1 - Core Component Implementation

The DSIStatement implementation is responsible for creating a DSIDataEngine object which in
turn creates IQueryExecutor objects to execute queries and hold results (IResults), and
DSIMetadataSource objects to return metadata information. This is summarized in Figure 2:

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 3

Figure 2 - DataEngine Implementation

The final key part of the DSI implementation is to create the framework necessary to retrieve
both data and metadata. A summary of this framework and the components implemented by the
sample are shown in Figure 3:

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 4

Figure 3: Design pattern for a DSI implementation.

The IResultSet interface is responsible for retrieving column data and maintaining a cursor
across result rows.

To implement data retrieval, your IResultSet implementation interacts directly with your data
store to retrieve the data and deliver it to the calling framework on demand. It should also take
care of caching, buffering, paging, and all the other techniques that speed data access.

The various “MetadataSource” classes provide a way for the calling framework to obtain
metadata information.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 5

Overview
The series of steps to take to get a prototype DSI implementation working with your data store is
as follows:

• Set up the development environment

• Make a connection to the data store

• Retrieve metadata

• Work with columns

• Retrieve data

In the JavaUltraLight driver, the areas of the code that you need to change are marked with
“TODO” messages along with a short explanatory message. Most of the areas of the code that
you need to modify are for productization rather than actually connecting your data store to
Simba SQLEngine. These are things like naming the driver, setting the properties that configure
the driver, and naming the error file and log files. The other areas of the code that you will
modify are related to getting the data and metadata from your data store into the Simba
SQLEngine. Since the JavaUltraLight driver already has the classes and code to do this against
the example data store, all you have to do is modify the existing code to make your driver work
against your own data store.

Day One – Windows Instructions
Today's task is to set up and test the development environment and project files for your driver.
By the end of the day, you will have compiled and tested your first ODBC driver.

Install SimbaEngine
Note: If you have a previous version of SimbaEngine installed, uninstall it before installing the
new one.

1. If Visual Studio is running, close it.

2. Run the SimbaEngine setup executable that corresponds to your version of Visual Studio
and follow the installer’s instructions.

Important: The SimbaEngine environment variables are defined only for the user that ran the
installation. If you install SimbaEngine as a regular user and then run Visual Studio as an
administrator, SimbaEngine will not work properly.

Components of the JavaUltraLight example driver
Java ODBC drivers that are built using SimbaEngine have two components:

• The native C++ component (JavaUltraLightJNIDSI) finds or creates an instance of the Java
Virtual Machine (JVM) and provides the Java driver implementation name to the bridge between
C++ and Java (SimbaJNIDSI).

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 6

• The Java component (JavaUltraLightDSII) is the DSII.

Set environment variables
1. Ensure that the environment variable, JAVA_HOME, is pointing to the root of your JDK. To

do this, go to your computer's System Properties configuration window, click the Advanced
tab and then click Environment Variables. If JAVA_HOME is not listed in the System
variables list, click New and in the Variable name field, type JAVA_HOME and in the Variable
value field, type the path of the java home directory. For example, it might be something like
this: C:\Program Files\Java\jdk1.7.0_60.

2. Ensure that the PATH environment variable includes the path to the jvm.dll. If the PATH
variable needs to be updated, click Edit and then add the path to the jvm.dll file to the end of
the path. It will look something like this: C:\Program
Files\Java\jdk1.7.0_60\jre\bin\server\.

Note: There is a difference between the 32-bit and 64-bit jvm.dll files and you must set the
path to the correct one.

Build the native C++ component (UltraLightJNIDSI)
1. Launch Microsoft Visual Studio.

2. Click File > Open > Project/Solution.

3. Navigate to
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight\Sou
rce\JavaUltraLightJNIDSI and then open the UltraLightJNIDSI_VS201x.sln file. This
solution file contains the UltraLightJNIDSI, which is the driver’s native component.
The default [INSTALL_DIRECTORY] is C:\Simba Technologies.

4. Click Build > Configuration Manager and make sure that the active solution configuration
is “Debug” and then click Close.

5. Click Build > Build Solution or press F7 to build the driver.
This will build the debug version of the driver and place it in the following location for 32-bit
drivers:

[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\source\JavaUltraLight\Bin

\Win32\Debug

Or will place it in this location for 64-bit drivers:

[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight\Bin

\x64\Debug

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 7

Build the Java component (JavaUltraLightDSII)
You can use ANT or tools that support ANT, such as the Eclipse IDE, to build the Java
component. As an example, these instructions describe how to build JavaUltraLight using the
Eclipse IDE.

1. Launch the Eclipse IDE.
Note: You can download the Eclipse IDE for Java Developers from
www.eclipse.org/downloads.

2. Import the JavaUltraLight project as an existing project into your workspace. To do this,
click File > Import. In the Import window, click General > "Existing Projects into Workspace"
and then click Next. Choose the "Select root directory" option and then click Browse to
navigate to
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight\Sou
rce\JavaUltraLightDSII. Click OK to the close the dialog.

3. Select only the JavaUltraLight project in the list of projects on the Import dialog and click
Finish.

4. Click Project > Properties > Java Build Path > Libraries. Select the SIMBAENGINE_DIR
entry. Click Edit and then click Variable. The Variable Selection window opens. Click New.
In the New Variable Entry window that opens, in the Name field, type SIMBAENGINE_DIR
and in the Path field, type the path of the DataAccessComponents folder of your installed
SimbaEngine. For example, it might be something like this: C:\Simba
Technologies\SimbaEngineSDK\10.1\DataAccessComponents. Click OK to close the
dialog, and the click OK to close the Variable Selection dialog.

5. A message is displayed, indicating that the classpath variables have changed and that a full
rebuild is recommended. Click No.

6. Click OK to close the Variable Entry window and click OK to close the Properties window.

7. Click Run > External Tools > External Tools Configurations.

8. In the External Tools Configurations window, double-click Ant Build.
A setup page for the new Ant build configuration is displayed.

9. In the Name field, type JavaUltraLight.

10. On the "Main" tab, in the Buildfile section, click Browse Workspace.

11. In the Choose Location window, click JavaUltraLightBuilderODBC.xml and then click OK.

12. Click Apply.

13. Still in the Ant build configuration window, switch to the Environment tab. Add an
environment variable called SIMBAENGINE_DIR with the value
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\DataAccessComponents.

14. Click Apply.

15. Click Run. This will build the JavaUltralight driver using Apache Ant and it will place it in the
location: [INSTALL_DIRECTORY]\Examples\Source\JavaUltralight\Lib.

http://www.eclipse.org/downloads

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 8

Update the registry
To update the registry keys, do the following:

1. In Microsoft Visual Studio, click File > Open > File and navigate to
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight\Sou
rce.

2. For 32-bit Windows, open SetupMyJavaUltraLightDSII-32on32.reg.

For a 32-bit ODBC driver on 64-bit Windows, open SetupMyJavaUltraLightDSII-
32on64.reg.

For a 64-bit ODBC driver on 64-bit Windows, open SetupMyJavaUltraLightDSII-
64on64.reg.

3. In the file, replace [INSTALL_DIRECTORY] with the path to the installation directory. In the
path, you must enter double backslashes. For example, by default, the samples are installed
to “C:\Simba Technologies” so in that case, you would replace all instances of
[INSTALL_DIRECTORY] with C:\\Simba Technologies.

4. Make sure that the -Djava.class.path path value for JavaUltraLight.jar points to the correct
location.

5. Beside the line that starts with "Driver"= verify that the path to the driver dll file is correct.

6. Click Save and then close the file.

7. Double-click the registry file that you just modified.
A message is displayed that indicates that the keys and values have been successfully
added to the registry.

Examine the registry keys for SimbaEngine
SimbaEngine uses the following registry keys that define Data Source Names (DSNs) and
driver locations:

• ODBC Data Sources - lists each DSN/driver pair

• JavaUltraLightDSII - defines the Data Source Name (DSN). Used by the ODBC Driver
Manager to connect your driver to your database

• ODBC Drivers - lists the drivers that are installed

• JavaUltraLightDSIIDriver - defines the driver and its setup location. The ODBC Driver
Manager uses this key

To view the registry keys, do the following:

1. Run regedit.exe.

2. To view the registry keys that are related to Data Source Names, expand the folders in the
Registry Editor to the following location:

For 32-bit drivers on 32-bit Windows and 64-bit drivers on 64-bit Windows:

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 9

HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBC.INI

For 32-bit drivers on 64-bit Windows:

HKEY_LOCAL_MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBC.INI

3. To view the registry keys that are related to ODBC drivers, expand the folders in the
Registry Editor to the following location:

For 32-bit drivers on 32-bit Windows and 64-bit drivers on 64-bit Windows:

HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBCINST.INI

For 32-bit drivers on 64-bit Windows:

HKEY_LOCAL_MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBCINST.INI

Your custom driver installer will eventually have to create similar registry keys.

Note: Registry keys for 32-bit and 64-bit ODBC drivers are installed in different areas of the
Windows registry. See Appendix B: Windows Registry 32-Bit vs. 64-Bit on page 33 for more
information.

Note: You cannot use the ODBC Data Source Administrator to configure this data source
because a configuration dialog has not been provided for the JavaUltraLight driver. If you try to
use the ODBC Data Source Administrator, you will see the following error message:

Test the data source
To test the data source that we have created, you can use any ODBC application, such as, for
example, Microsoft Excel, Microsoft Access or ODBCTest. In this section, we will use the ODBC
Test tool, which is available in the Microsoft Data Access (MDAC) 2.8 Software Development Kit
(SDK). To download SimbaEngine, visit the following Microsoft Web site:
http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-b502-
de4329c8c850&displaylang=en

Note: Before you test the data source, you must ensure that the jvm.dll file is in your path. This
is described in the section "Set environment variables".

1. Start the ODBC Test tool. By default, the ODBC Test application is installed in the following
folder: C:\Program Files (x86)\Microsoft Data Access SDK 2.8\Tools\

http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-b502-de4329c8c850&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-b502-de4329c8c850&displaylang=en

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 10

Navigate to the folder that corresponds to your machine’s architecture (amd64, ia64 or x86)
and then click odbcte32.exe to launch the ANSI version or click odbct32w.exe to launch
the Unicode version.

Note: It is important to run the correct version of the ODBC Test tool for ANSI or Unicode
and 32-bit or 64-bit.

2. In the ODBC Test tool, select Conn > Full Connect.
The Full Connect window opens.

3. Select your Data Source from the list of data sources and then click OK.
If you do not see your data source in the list, make sure that you are running the version of
the ODBC Test tool that corresponds to the version of the data source that you created. In
other words, if you created a 32-bit data source then you should be using the 32-bit version
of the ODBC Test tool.

4. When the tool connects to the data source, you will see the message, "Successfully
connected to DSN 'JavaUltraLightDSII'".

Set up a new project to build your own ODBC driver
Now that you have built the example driver, you are ready to set up a development project to
build your own ODBC driver.

Note: It is very important that you create your own project directory. You might be tempted to
just modify the sample project files but we strongly recommend against this, because when you
install a new release of SimbaEngine, changes you make will be lost and there may be times,
for debugging purposes, that you will need to see if the same error occurs using the sample
drivers. If you have modified the sample drivers, this won’t be possible.

1. In your Windows Explorer window, copy the
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight
directory and paste it to the same location. This will create a new directory called
"JavaUltraLight - Copy". Rename the directory to something that is meaningful to you.
This will be the top-level directory for your new project and DSI implementation files. For the
rest of this tutorial, when you see <YourProjectName> in the instructions, replace this with
the name you choose for this directory which is also the name of your project.

2. Open your new directory then open the Source directory.

3. Rename the JavaUltraLightJNIDSI directory to <YourProjectName>JNIDSI.

4. Rename the JavaUltraLightDSII directory to <YourProjectName>DSII.

5. Go to the <YourProjectName>JNIDSI directory and then right-click the
UltraLightJNIDSI_VS201x.sln file.

6. Select Open with > Microsoft Visual Studio Version Selector.
7. In the Microsoft Visual Studio menu, click View > Solution Explorer.
8. Using the Solution Explorer, rename the UltraLightJNIDSI_VS201x solution to

<YourProjectName>JNIDSI_VS201x.

9. Rename the UltraLightJNIDSI project to <YourProjectName>JNIDSI.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 11

10. Change the branding in Simba::JNIDSI::SetConfigurationBranding() in
main_windows.cpp.

11. Click File > Save All.
12. In Windows Explorer, go to the <YourProjectName>DSII\CommonSource directory and

then rename the JavaUltraLightBuilder.xml file to <YourProjectName>Builder.xml.

13. In Windows Explorer, go to the <YourProjectName>DSII\ODBC directory and then rename
the JavaUltraLightBuilderODBC.xml file to <YourProjectName>BuilderODBC.xml. This is
the Apache Ant builder file (.xml) for your new ODBC driver. Using a text editor, open the
file and replace every instance of “JavaUltraLight” in the source code with the name of your
new ODBC driver. Next, update the copyright information for the “doc” target. Then save
and close the file.

14. Open the .project file in a text editor and replace the “JavaUltraLight” within the <name>
tags with <YourProjectName>. Save and close the file.

Build the native C++ component
1. In Microsoft Visual Studio, click Build > Build Solution or press F7 to build the driver.

When you build your new project, “TODO” messages appear in the Output window along
with the build information. If the Output window is not displayed automatically, you can open
it by selecting Debug > Windows > Output.

TODO #1: Update full Java driver name. (UltraLightJNIDSI.cpp)

TODO #2: Find or create the Java Virtual Machine. (UltraLightJNIDSI.cpp)

Build the Java component
You can use ANT or tools that support ANT, such as the Eclipse IDE, to build the Java
component. As an example, these instructions describe how to build JavaUltraLight using the
Eclipse IDE.

1. With the Eclipse IDE, click File > Import. In the Import window, click General > "Existing
Projects into Workspace" and then click Next. Choose the "Select root directory" option and
then click Browse to navigate to
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\<YourProjectName>\
Source\ODBC\<YourProjectName>DSII. Then click Finish.

2. To see your new Java project in the Project Explorer window, click Window > Show View >
Project Explorer.

3. Select only the <YourProjectName> project in the list of projects on the Import dialog and
click Finish.

4. Click Run >External Tools > External Tools Configurations.

5. In the External Tools Configurations window, double-click Ant Build.
A setup page for the new Ant build configuration is displayed.

6. In the Name field, type <YourProjectName>.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 12

7. On the "Main" tab, in the Buildfile section, click Browse Workspace.

8. In the Choose Location window, click <YourProjectName>BuilderODBC.xml and then
click OK.

9. Click Apply.

10. Click Run. This will build the driver using Apache Ant.

Search your Java workspace for ‘TODO’ to find the following comments that mark locations
where changes to your driver code need to be made:

TODO #1: Set the driver name. (ULDriver.java)

TODO #2: Set the driver properties. (ULDriver.java)

TODO #3: Set the connection properties. (ULConnection.java)

TODO #4: Set the driver-wide logging details. (ULDriver.java)

TODO #5: Set the connection-wide logging details. (ULConnection.java)

TODO #6: Check connection settings. (ULConnection.java)

TODO #7: Establish a connection to your data store. (ULConnection.java)

TODO #8: Create and return your Metadata Sources. (ULDataEngine.java)

TODO #9: Prepare a Query. (ULDataEngine.java)

TODO #10: Implement a Query Executor. (ULQueryExecutor.java)

TODO #11: Provide parameter information. (ULQueryExecutor.java)

TODO #12: Implement Query Execution. (ULQueryExecutor.java)

TODO #13: Implement your Result Set. (ULPersonTable.java)

TODO #14: Register your error messages for handling
by DSIMessageSource

(ULDriver.java)

TODO #15: Set the vendor name, which will be
prepended to error messages.

(ULDriver.java)

TODO #16: Update the component name. (UltraLight.java)

TODO #17: Assign a unique component ID value to the
messages.

(UltraLight.java)

Over the next four days, you will visit each “TODO” and modify the source code.

Update the registry
You must update the Windows registry to add the information for your new ODBC driver before
you will be able to test it.

To update the registry keys, do the following:

1. In Microsoft Visual Studio, click File > Open > File and navigate to
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\<YourProjectName>\
Source.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 13

2. For 32-bit Windows, open SetupMyJavaUltraLightDSII-32on32.reg.

For a 32-bit ODBC driver on 64-bit Windows, open SetupMyJavaUltraLightDSII-
32on64.reg.

For a 64-bit ODBC driver on 64-bit Windows, open SetupMyJavaUltraLightDSII-
64on64.reg.

3. In the file, replace all instances of JavaUltraLight with the name of your driver.

4. In the file, replace [INSTALL_DIRECTORY] with the path to the installation directory. In the
path, you must enter double backslashes. For example, by default, the samples are installed
to “C:\Simba Technologies” so in that case, you would replace all instances of
[INSTALL_DIRECTORY] with C:\\Simba Technologies.

5. Next, update the ODBC Data Sources section to add your new data source. Under the
[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ODBC Data Sources] section, change
"MyJavaUltraLightDSII"="MyJavaUltraLightDSIIDriver" to the name of your new
data source and new driver. For example,
"<YourProjectName>DSII"="<YourProjectName>DSIIDriver"

6. Then, modify the data source definition for that data source. Change the line that says
[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\MyJavaUltraLightDSII] so that it
contains your new data source name. For example,
[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\<YourProjectName>DSII]

7. Beside the line that starts with "Driver", update the path to the .dll file.

8. Update the ODBC Drivers section to add your new driver. Under the
[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers] section,
change "MyJavaUltraLightDSIIDriver"="Installed" to match the name of your new
driver. For example, "<YourProjectName>DSIIDriver"="Installed"

9. Modify the driver definition for that driver. Change the line that says
[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\MyJavaUltraLightDSIIDriver]
so that it contains your new driver name. For example,
[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\<YourProjectName>DSIIDriver
]

10. Beside the line that starts with “Driver”, update the path to the .dll file.

11. Click Edit > Find and Replace > Quick Replace. Then, replace “JavaUltraLight” in the
whole file with the name of your new driver.

12. Click Save and then close the file.

13. In the Registry Editor (regedit.exe), click File > Import, navigate to the registry file that
you just modified and then click Open.
A message is displayed that says that the keys and values have been successfully added to
the registry.

Note: You cannot use the ODBC Data Source Administrator to configure this data source.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 14

Test your new data source

Testing the native (C++) project
1. Start the ODBC Test tool. By default, the ODBC Test application is installed in the following

folder: C:\Program Files (x86)\Microsoft Data Access SDK 2.8\Tools\

Navigate to the folder that corresponds to your driver’s architecture (amd64, ia64 or x86)
and then click odbcte32.exe to launch the ANSI version or click odbct32w.exe to launch
the Unicode version. It is important to run the correct version of the ODBC Test tool for ANSI
or Unicode and 32-bit or 64-bit.

2. Attach Visual Studio to the ODBC Test process. To do this, go to Microsoft Visual Studio
and then click Debug > Attach to Process.

3. In the Attach to Process window, ensure that the Attach to field is set to “Native Code”. In
the list of available processes, select the ODBC Test process and then click Attach. The
process name will be either odbc32.exe or odbct32w.exe.

4. Add a breakpoint to Simba::JNIDSI::SetConfigurationBranding() in
Main_Windows.cpp. This code runs as soon as the Driver Manager loads the ODBC driver.

5. In the ODBC Test tool, select Conn > Full Connect.
The Full Connect window opens.

6. Select your Data Source from the list of data sources and then click OK.
If you do not see your data source in the list, make sure that you are running the version of
the ODBC Test tool that corresponds to the version of the data source that you created. In
other words, if you created a 32-bit data source then you should be using the 32-bit version
of the ODBC Test tool.

7. You should hit the breakpoint you created and focus should switch to Visual Studio.

8. To continue running the program, select Debug > Continue.
The focus returns to the ODBC Test window.

9. When the tool connects to the data source, you will see the message "Successfully
connected to DSN '<YourProjectName>DSII'".

Debugging your Driver
During the development of your driver, it may be necessary for you to trace through your driver
during execution to locate problems. Most Java applications will either have a shell script/batch
file to launch the application or have a configuration file where JVM options can be added.

You will need to add the following JVM options to enable debugging with the Eclipse IDE:

• –Xdebug

• -Xrunjdwp:transport=dt_socket,address=localhost:8000,suspend=n,server=y

These need to be added to the JNIConfig registry entry in

HKEY_LOCAL_MACHINE/SOFTWARE/Simba/JavaUltraLight/Driver

Each value needs to be separated by a pipe “|” character. For example:

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 15

-Djava.class.path=C:\Simba
Technologies\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight\Lib\JavaUltra
Light.jar|-Xdebug|-
Xrunjdwp:transport=dt_socket,address=localhost:8000,suspend=n,server=y

Once you have added these options for your application, launch your application. You will now
be able to attach the Eclipse debugger to the running application and debug your driver.

If you need to debug the initialization of your driver, set the suspend parameter to y. A good
breakpoint to start with is inside the ULDriver constructor. Launch your JDBC-enabled
application. The JVM will suspend execution until a debugger has been attached.

Please see the Eclipse documentation for instructions on debugging Remote Java Applications.

By the end of this day, you should have built and tested, unchanged, the example driver shipped
with SimbaEngine to make sure that your installation worked properly and that your
development system is properly set up. Also, you should have created, built and tested a copy
of the JavaUltraLight Driver example that you will change to work with your own data store.

Day One – Linux Instructions
Today's task is to set up and test the development environment. By the end of the day, you will
have compiled and tested your ODBC driver on Linux.

Install SimbaEngine
Note: If you have a previous version of SimbaEngine installed, uninstall it before installing the
new one.

On Linux and UNIX platforms, SimbaEngine is provided as a single file consisting of the
SimbaEngineSDK*.tar.gz file, a tar format archive that has been compressed using the gzip tool.
The “*” in the file name represents a string of characters that represent the build number and
platform. For example, the file name might look something like this:
SimbaEngineSDK_Eval_Linux-x86_9.2.0.1000.tar.gz

1. Open a command prompt.

2. Change to the directory where you want to install SimbaEngine.
Later in the instructions, we will refer to this as [INSTALL_DIRECTORY].

3. Copy the SimbaEngineSDK*.tar.gz file to that directory.

4. To uncompress the file, type: gunzip SimbaEngineSDK*.tar.gz

5. To extract the tar file, type: tar -xvf SimbaEngineSDK*.tar

Components of the JavaUltraLight example driver
Java ODBC drivers that are built using SimbaEngine have two components:

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 16

• The native C++ component (UltraLightJNIDSI) finds or creates an instance of the Java Virtual
Machine (JVM) and provides the Java driver implementation name to the bridge between C++
and Java (SimbaJNIDSI).

• The Java component (JavaUltraLight) is the DSII.

Build the native C++ component (UltraLightJNIDSI)
On Linux and UNIX platforms, the sample drivers use makefiles instead of Visual Studio
solution files.

To build the SimbaEngine UltraLight sample driver, the steps are as follows:

1. Ensure that the environment variable, JAVA_HOME, is pointing to the root of your JDK. To do
this open a Terminal window and type the following command:
echo $JAVA_HOME

2. If no output is displayed, set the $JAVA_HOME environment variable. For example, you might
add something like this to your .bashrc file:
 export JAVA_HOME=/usr/java/jdk1.7.0_60/

3. Ensure that the PATH environment variable includes the path to java. If the PATH variable
needs to be updated, you can modify your .bashrc file.

4. Set the SIMBAENGINE_DIR environment variable. For example, you might add the following
line to your .bashrc file:
 export
SIMBAENGINE_DIR=[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/DataAccessCompone
nts

5. Set the SIMBAENGINE_THIRDPARTY_DIR environment variable. For example, you might add
the following line to your .bashrc file:

 export

SIMBAENGINE_THIRDPARTY_DIR=[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/DataAcc

essComponents/ThirdParty

6. In the commands from the previous two steps above, replace [INSTALL_DIRECTORY] with
the directory where you installed the SimbaEngine files.

7. Type the following command to change to the directory that contains the makefile:
cd
[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Examples/Source/JavaUltraLight/So
urce

8. Type the following command to run the makefile for the debug target:
 ./mk.sh MODE=debug

For more build options, see the SimbaEngine Developer Guide. If you are using XCode, by
default, the makefile detects the latest version of XCode on your machine.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 17

Optionally, you can specify a different version of XCode using the environment variable
DEVELOPER_DIR.

Build the Java component (JavaUltraLight)
1. Launch the Eclipse IDE.

Note: You can download the Eclipse IDE for Java Developers from
www.eclipse.org/downloads.

2. Import the JavaUltraLight project as an existing project into your workspace. To do this,
click File > Import. In the Import window, click General > "Existing Projects into
Workspace" and then click Next. Choose the "Select root directory" option and then click
Browse to navigate to
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight\Sou
rce\JavaUltraLightDSII\ODBC. Then click Finish.

3. Select only the JavaUltraLight project in the list of projects on the Import dialog and click
Finish.

4. Select the JavaUltraLight project in the Package Explorer.

5. Click Project > Properties > Java Build Path > Libraries. Click Add Variable and then
click on the Configure Variables on the New Variable Classpath Entry dialog. Click New
on the Preferences dialog, enter SIMBAENGINE_DIR in the Name field, and the path in
the Path field. For example, it might be something like this:
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\DataAccessComponents. Click OK to
close the Preferences dialog and click OK to close the Configure Variables on the New
Variable Classpath Entry dialog.

6. If a message is displayed, saying that the classpath variables have changed and that a full
rebuild is recommended. Click No.

7. Click OK to close the properties windows.

8. Click Run >External Tools > External Tools Configurations.

9. In the External Tools Configurations window, double-click Ant Build.
A setup page for the new Ant build configuration is displayed.

10. In the Name field, type JavaUltraLight.

11. On the "Main" tab, in the Buildfile section, click Browse Workspace.

12. In the Choose Location window, click JavaUltraLightBuilderODBC.xml and then click OK.

13. Click Apply.

14. Still in the Ant build configuration window, switch to the Environment tab. Add an
environment variable called SIMBAENGINE_DIR with the value
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\DataAccessComponents.

15. Click Apply.

16. Click Run. This will build the JavaUltraLight driver using Apache Ant and it will place it in the
location:
[INSTALL_DIRECTORY]\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight\Lib

http://www.eclipse.org/downloads

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 18

Configure the ODBC data source and ODBC driver
ODBC driver managers use configuration files to define and configure ODBC data sources and
drivers. The odbc.ini file is used to define ODBC data sources and the odbcinst.ini file is
used to define ODBC drivers.

Location of the ODBC configuration files

The value of the $ODBCINI and $ODBCSYSINI environment variables specify the location of
the configuration files. If these environment variables are not set, it is assumed that the
configuration files will be in the user’s home directory and the default filename must be used
(.odbc.ini and .odbcinst.ini).

Optionally, if you decide to put the configuration files somewhere other than the user’s home
directory, set the environment variables by typing a command similar to the following example:
export ODBCINI=/usr/local/odbc/myodbc.ini
export ODBCSYSINI=/usr/local/odbc/myodbcinst.ini

Samples of the configuration files are provided in the following directory:
[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Documentation/Setup

Configure an ODBC data source

ODBC Data Sources are defined in the .odbc.ini configuration file.

To configure a data source:

1. To see if the .odbc.ini file already exists in your home directory, type the following command:
ls –al ~ | grep .odbc.ini

If the file exists, you will see something like this:
-rw-rw-r-- 1 employee employee 1379 Oct 23 14:56 .odbc.ini

If the file doesn’t exist, then the command will not return anything. In this case, copy the
odbc.ini file from the samples directory by typing:
cp [INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Documentation/Setup/odbc.ini
~/.odbc.ini

2. Open the ~/.odbc.ini configuration file in a text editor. To open the file, you may need to
configure your text editor to show hidden files.

3. Make sure there is an entry in the [ODBC Data Sources] section that defines the data
source name (DSN). The [ODBC Data Sources] section is used to specify the available data
sources.
[ODBC Data Sources]
JavaUltraLightDSII=JavaUltraLightDSIIDriver

4. Make sure there is a section with a name that matches the data source name (DSN). This
section will contain the configuration options. They are specified as key-value pairs.
[JavaUltraLightDSII]
Description=Sample 64-bit SimbaEngine JavaUltraLight DSII

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 19

Driver=[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Examples/Source/JavaUltraL
ight/Bin/Linux_x8664/libUltraLightJNIDSI_debug.so

Define an ODBC driver

ODBC Drivers are defined in the .odbcinst.ini configuration file. This configuration is optional
because drivers can be specified directly in the .odbc.ini configuration file as discussed in the
previous section.

To define a driver:

1. To see if the .odbcinst.ini file exists in your home directory, type the following command:
ls –al ~ | grep .odbcinst.ini

If the file exists, you will see something like this:
-rw-rw-r-- 1 employee employee 2272 Oct 23 15:30 .odbcinst.ini

If the file doesn’t exist, then the command will not return anything. In this case, copy the
odbc.ini file from the samples directory by typing:
cp
[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Documentation/Setup/odbcinst.ini
~/.odbcinst.ini

2. Open the ~/.odbcinst.ini configuration file in a text editor.

3. Add a new entry to the [ODBC Drivers] section. The [ODBC Drivers] section is used to
specify the available drivers. Type the driver name and the value “Installed”. This driver
name should be used for the “Driver” value in the data source definition instead of the driver
shared library name. For example, it might look something like this:
[ODBC Drivers]
JavaUltraLightDSIIDriver=Installed

4. Add a new section with a name that matches the new driver name. This section will contain
the configuration options. They are specified as key-value pairs.
[JavaUltraLightDSIIDriver]
Driver=[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Examples/Source/JavaUltraL
ight/Bin/Linux_x8664/libUltraLightJNIDSI_debug.so

Configure the Simba JavaUltraLight ODBC Driver
1. To see if the .simba.javaultralight.ini file already exists in your home directory, type

the following command:
ls -al ~ | grep .simba.javaultralight.ini

2. If the file doesn’t exist, then the command will not return anything. In this case, copy the file
from the samples directory by typing:
cp
[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Documentation/Setup/.simba.javault
ralight.ini ~/.simba.javaultralight.ini

3. Open the ~/.simba.javaultralight.ini configuration file in a text editor.

4. Edit the DriverManagerEncoding setting.
If you are using the “iODBC” ODBC Driver Manager set the DriverManagerEncoding

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 20

setting to UTF-32.
-or-
If you are using the “unixODBC” ODBC Driver Manager, you will need to check which setting
to use. Type odbc_config -–cflags at a command prompt. If you see the
“DSQL_WCHART_CONVERT” flag, then set the DriverManagerEncoding setting to UTF-32.
Otherwise, set it to UTF-16.
For more information about your ODBC driver manager, consult your system administrator
or your ODBC Driver Manager documentation.

5. Edit the ErrorMessagesPath setting to replace “[INSTALLDIR]” with your install directory.

6. Set the ODBCInstLib to the absolute path of the ODBCInst library for the Driver Manager
that you are using.
For example, for the iODBC Driver Manager this would look something like this:
ODBCInstLib=/usr/lib/libiodbcinst.so (notice the ‘i’ after the lib)
For unixODBC this would be:
ODBCInstLib=/usr/lib/libodbcinst.so

7. Save the file.

For more information about how to configure data sources under Linux, Unix and MacOSX,
please refer to the SimbaEngine Developer Guide.

Enable Debugging

To enable debugging for the JavaUltraLight sample driver:

1. In the .simba.javaultralight.ini file that you edited in the section Configure the Simba
JavaUltraLight ODBC Driver on page 19, update the JNIConfig line to indicate the
following:
JNIConfig=-Djava.class.path=[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/
Examples/Source/JavaUltralight/Lib/JavaUltraLight.jar

OR

To enable remote debugging of your DSII, update the JNIConfig line to something like
this:

JNIConfig=-Djava.class.path=[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/
Examples/Source/JavaUltraLight/Lib/JavaUltraLight.jar|-Xdebug|-Xrunjdwp
:transport=dt_socket,address=localhost:8000,suspend=n,server=y

2. Save the file that you edited in step 1.

Test the data source
Prerequisites:

• You must have the International Components for Unicode (ICU) libraries in the
LD_LIBRARY_PATH environment variable.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 21

To add the 32-bit ICU libraries, type the following at the command line:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:[INSTALLDIR]/SimbaEngineSDK/10.1/
DataAccessComponents/ThirdParty/icu/53.1/centos5/gcc4_4/release32/lib

To add the 64-bit ICU libraries, type the following at the command line:

export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:[INSTALLDIR]/SimbaEngineSDK/10.1/DataAcc
essComponents/ThirdParty/icu/53.1/centos5/gcc4_4/release64/lib

• You must have the path to the libjvm.so file in the LD_LIBRARY_PATH environment variable.
For example, the file might be in a location like this:
/usr/java/jdk1.6.0_31/jre/lib/amd64/server.

• You must have a Driver Manager such as iODBC or unixODBC installed.
For more detailed information on Driver Managers and testing, please refer to the SimbaEngine
Developer Guide.

One way to test your data source is to use the test utility, iodbctest, which is included with the
iODBC Driver Manager:

1. At the command prompt, type the following command: iodbctest

2. At the prompt that says “Enter ODBC connect string”, type ? to show the list of DSNs and
Drivers.

3. In the list, you should see your JavaUltraLightDSII DSN.

4. To connect to your data source, type the following command:
DSN=JavaUltraLightDSII

A prompt that says “SQL>” appears.

5. Type a SQL command to query your database. For example, SELECT * FROM PRODUCT. A
simple result set should be returned.

If there were no problems with the example drivers you built, you are now ready to set up a
development project to build your own ODBC driver

Build your new ODBC driver
Now that you have built the example driver, you are ready to set up a make file to build your
own ODBC driver.

1. Copy the JavaUltraLight directory to a new directory that will be the top-level directory for
your new project and DSI implementation files. For example, you could do it like this:

cp –R

[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Examples/Source/JavaUltraLight

[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Examples/MyJavaUltraLight

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 22

Note: It is very important that you take this step to create your own directory because there
may be times, for debugging purposes, that you will need to see if the same error occurs
using the sample drivers. If you have modified the sample drivers, this will not be possible.

2. Open your new directory then open the Makefiles directory and rename the
UltraLightJNIDSI.mak file in it. For example, you could type mv UltraLightJNIDSI.mak
MyUltraLightJNIDSI.mak.

3. Then, rename the .depend file that is located in the Makedepend directory.

4. Open your new directory then open the Source/JavaUltraLightJNIDSI directory. Open
the Makefile file and replace the “UltraLightJNIDSI” project name in the source code
with the name of your new ODBC driver. Then save and close the file.

5. Change to the following directory:
[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Examples/Source/MyJavaUltraLight/S
ource

6. To run the makefile for the debug target, type the following command:

 ./mk.sh MODE=debug

Configure an ODBC data source and ODBC driver
1. Open the .odbc.ini configuration file in a text editor.

2. Make sure there is an entry in the [ODBC Data Sources] section that defines the data
source name (DSN).
[ODBC Data Sources]
MyJavaUltraLightDSII=MyJavaUltraLightDSIIDriver

3. Make sure there is a section with a name that matches the data source name (DSN).
[MyJavaUltraLightDSII]
Description=My SimbaEngine DSII
Driver=[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Examples/Source/MyJavaUltr
aLight/Bin/Linux_x8664/libMyUltraLightJNIDSI_debug.so

4. Open the .odbcinst.ini configuration file in a text editor.

5. Add a new entry to the [ODBC Drivers] section. For example, it might look something like
this:
[ODBC Drivers]
MyJavaUltraLightDSIIDriver=Installed

6. Add a new section with a name that matches the new driver name.
[MyJavaUltraLightDSIIDriver]
Driver=[INSTALL_DIRECTORY]/SimbaEngineSDK/10.1/Examples/Source/MyJavaUltr
aLight/Bin/Linux_x8664/libMyUltraLightJNIDSI_debug.so

7. Copy the .simba.javaultralight.ini file in your home directory so it has the name
.simba.myjavaultralight.ini, and then update settings in
.simba.myjavaultralight.ini for your own ODBC driver as described in Configure the
Simba JavaUltraLight ODBC Driver on page 19.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 23

8. To enable debugging, in the .simba.myjavaultralight.ini file, update the JNIConfig
line to use the path to your new jar file.

Test your new data source
One way to test your data source is to use the test utility, iodbctest, which is included with the
iODBC Driver Manager:

1. At the command prompt, type the following command: iodbctest

2. At the prompt that says, “Enter ODBC connect string”, type ? to show the list of DSNs and
Drivers.

3. In the list, you should see your MyJavaUltraLightDSII DSN.

4. To connect to your data source, type the following command:
DSN=MyJavaUltraLightDSII

A prompt that says “SQL>” appears.

5. Type a SQL command to query your database. For example, SELECT * FROM PRODUCT.

6. To quit iodbctest, at the prompt, type quit.

At this point, you have built and tested the JavaUltraLight driver to make sure that your
installation worked properly and that your development system is properly set up. In addition,
you have created, built and tested your own copy of the JavaUltraLight Driver example that you
will modify to work with your own data store.

Day Two
Today's goal is to customize your driver, enable logging and establish a connection to your data
store. To accomplish this you will visit the C++ TODO item 1 and the Java TODO items 1 to 6.

Find or create the Java Virtual Machine
TODO #1: Update full Java driver name. (UltraLightJNIDSI.cpp)

TODO #2: Find or create the Java Virtual Machine. (UltraLightJNIDSI.cpp)

1. In Visual Studio, in the C++ project, you will see the TODO messages in the Output window.
Double click the TODO message to jump to the relevant section of code. If you cannot see
the TODO messages, rebuild the solution by selecting Build > Rebuild Solution. If it is not
already displayed, you can open the Output window by selecting Debug > Windows >
Output.

The JvmFactory() implementation in UltraLightJNIDSI.cpp in the UltraLightJNIDSI
project is the first hook that is called from Simba’s JNIDSI layer to find or create an instance
of the Java VM during initialization of the bridge. This method is called soon after the Driver
Manager calls LoadLibrary() on your ODBC driver. After that, the C++ to Java proxies are
initialized and an instance of your DSI implementation is created when the name of the

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 24

Java Driver is retrieved from GetFullJavaDriverName(). The name returned by this
method must match the fully-qualified name of the Java driver class name in ULDriver.java
(e.g. com.simba.ultralight.core.ULDriver).

Set the driver name
TODO #1: Set the driver name. (ULDriver.java)

Set the constant DRIVER_NAME to the name of your driver (usually the same name you
used to replace “JavaUltraLight” in the section “Set up a new project to build your own
ODBC driver” from Day One).

Set the driver properties
TODO #2: Set the driver properties. (ULDriver.java)

TODO #3: Set the connection properties. (ULConnection.java)

1. In Eclipse, in your project, go to the TODO #2 message in the ULDriver.java file. Look at
setProperty()where you will set up the general properties for your driver.

2. Change the DSI_DRIVER_DRIVER_NAME to the name of your new driver.

3. Go to the TODO #3 message in the ULConnection.java file. Look at setProperty()where
you will set up the general properties for your connection.

4. Adjust the connection properties as required by your driver.

Set the logging details
TODO #4: Set the driver-wide logging details. (ULDriver.java)

TODO #5: Set the connection-wide logging details. (ULConnection.java)

1. Go to the TODO #4 message.

2. Change the driver log’s file name.

3. Go to the TODO #5 message.

4. Change the connection log’s file name.

5. Click Save All.

Note: By default, the SimbaEngine JavaUltraLight Driver maintains two kinds of log files: one for
all driver-based calls and one for each connection created. Update these TODO’s if you do not
require such fine granularity in logging.

For more information about how to enable logging, refer to the SimbaEngine Developer Guide.

Check the connection settings
TODO #6: Check Connection Settings. (ULConnection.java)

When the Simba JDBC layer is given a connection URL from a JDBC-enabled application, the
Simba JDBC layer parses the connection string into key-value pairs. Then, the entries in the

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 25

connection string and the DSN are sent to updateConnectionSettings()function which is
responsible for verifying that all of the required, and any optional, connection settings are
present.

When a connection occurs, a connection URL is passed to the JDBC driver. As an example,
take the connection string “jdbc:simba://User=user;Password=pass”. This connection string is
broken down into key-value pairs and stored in a ConnSettingRequestMap, in this case that
map would contain two entries: {“User”, “user”} and {“Password”, “pass”}. This map is then
passed down to the DSII.

1. Go to the TODO #6 message to jump to the relevant section of code.

2. The updateConnectionSettings()function should validate that the key-value pairs within
the requestMap are sufficient to create a connection. Use the
verifyRequiredSetting()or verifyOptionalSetting()utility functions to do this.

3. If any of the values received are invalid, you should throw an exception.

4. If there are no further entries required, simply leave the responseMap empty.

Establish a connection
TODO #7: Establish A Connection. (ULConnection.java)

Once ULConnection.updateConnectionSettings() returns a responseMap without any
required settings (if there are only optional settings, a connection can still occur), the Simba
ODBC layer will call ULConnection’s connect() method passing in all the connection settings
received from the application. This is where you should authenticate the user against your data
store using the information provided within the requestMap parameter.

Should authentication fail, you should throw a BadAuthException. You can also use the utility
functions supplied: getRequiredSetting() and getOptionalSetting().

Day Three
Today’s goal is to return the data used to pass catalog information back to the ODBC-enabled
application. Almost all ODBC-enabled applications require the following ODBC catalog
functions:

• SQLGetTypeInfo

• SQLTables (CATALOG_ONLY)

• SQLTables (SCHEMA_ONLY)

• SQLTables (TABLE_TYPE_ONLY)

• SQLTables

• SQLColumns

Create and return metadata sources
TODO #8: Create and return your Metadata Sources. (ULDataEngine.java)

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 26

ULDataEngine.makeNewMetadataSource() is responsible for creating the sources to be used
to return data to the ODBC-enabled application for the various ODBC catalog functions. Each
ODBC catalog function is mapped to a unique MetadataSourceId, which is then mapped to an
underlying IMetadataSource that you will implement and return. Each IMetadataSource
instance is responsible for the following:

• Creating a data structure that holds the data relevant for your data store: Constructor

• Navigating the structure on a row-by-row basis: moveToNextRow()

• Retrieving data: getMetadata() (See the appendix, Data Retrieval, for a brief overview of
data retrieval).

Handle TYPE_INFO

The underlying ODBC catalog function SQLGetTypeInfo is handled as follows:

1. When called with TYPE_INFO, ULDataEngine.makeNewMetadataSource() will return an
instance of ULTypeInfoMetadataSource().

2. The SimbaEngine JavaUltraLight Driver example exposes support for the following types:

SQL_BIT SQL_CHAR SQL_DOUBLE

SQL_INTEGER SQL_LONGVARBINARY SQL_LONG_VARCHAR

SQL_NUMERIC SQL_REAL SQL_SMALLINT

SQL_TINYINT SQL_TYPE_DATE SQL_TYPE_TIME

SQL_TYPE_TIMESTAMP SQL_VARBINARY SQL_VARCHAR

SQL_WCHAR SQL_WLONGVARCHAR SQL_WVARCHAR

3. For your driver, you may need to change the types returned and the parameters for the
types in ULTypeInfoMetadataSource.initializeDataTypes().

Handle the other MetadataSources

The other ODBC catalog functions (including SQLTables (CATALOG_ONLY), SQLTables
(TABLETYPE_ONLY), SQLTables (SCHEMA_ONLY), SQLTables and SQLColumns) are
handled automatically as follows:

1. When called with the corresponding metatable ID’s,
ULDataEngine.makeNewMetadataSource()returns a new instance of one of the
following respective DSIMetadataSource-derived classes:

• ULCatalogOnlyMetadataSource: returns a list of all catalogs. The sample
implementation returns one row of information with one column containing the name
of a fake catalog. This demonstrates how to return a catalog name.

• DSITableTypeOnlyMetadataSource: (default implementation by Simba) returns
metadata about all tables of a particular type (TABLE, SYSTEM TABLE, and VIEW) in
the datasource. This class provides two constructors which allow for returning the
default set of table types (listed above) or for specifying your own set of table types.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 27

• ULSchemaOnlyMetadataSource: returns a list of all schemas. The sample
implementation returns one row of information with one column containing the name
of a fake schema. This demonstrates how to return a schema name.

• ULTablesMetadataSource: returns metadata about all of the tables in the data source.
The sample hard codes and returns information for the hard coded person table to
demonstrate how to return table metadata.

• ULColumnsMetadataSource: returns metadata for the columns in the data source.
The sample hard codes and returns information for the three columns in the person
table consisting of the name column, an integer column, and a numeric column.

2. When called with any other MetadataSourceID, which doesn’t correspond to these
tables, ULDataEngine.makeNewMetadataSource()returns a new instance of
DSIEmptyMetadataSource to indicate that no metadata is available for the specified
table ID.

You can now retrieve type metadata from within your data store.

On Linux and UNIX platforms, metadata is also available using the datatypes command in the
iodbctest utility.

Day Four
Today’s goal is to enable data retrieval from within the driver. We will cover the process of
preparing a query, providing parameter information, implementing a query executor, and
implementing a result set.

Query Preparation

The first step in obtaining data from your data store is to prepare a query.

TODO #9: Prepare a query (ULDataEngine.java).

The ULDataEngine.prepare() method takes in a query and is expected to pass it to the
underlying SQL enabled datasource for preparation. Once prepared, the method then returns a
ULQueryExecutor which is used by the engine to return results.

For demonstration purposes, the default implementation of ULDataEngine.prepare() performs
a very simple preparation by searching for the substrings “select” and “?” in the query and sets
up a collection of statement types to be passed to a ULQueryExecutor for processing.

If “select” is found, then it is assumed that the caller wants to search for rows of data and a
result set is therefore returned. If “select” is not found, then it is assumed that the caller wants to
retrieve the number of rows and so a row count is therefore returned. If “?” is present, then the
statement is assumed to be parameterized and therefore ULQueryExecutor’s constructor will
populate parameters as described below.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 28

The method also checks the query for the string “{multipleresultset” and if found will create and
return a row count. If the “multipleresultset” string does not follow the “{“ character, then two
result sets are returned.

In your implementation, you would replace this with more sophisticated logic or pass the query
to the data source for preparation.

If the query can be prepared, a new instance of your IQueryExecutor will be returned.

Query Execution
After a query has been prepared, a query is executed.

TODO #10: Implement a QueryExecutor (ULQueryExecutor.java)

The ULQueryExecutor object returned by the ULDataEngine.prepare() method is an
implementation of IQueryExecutor which, as the name suggests, executes a query. The
implementation of ULQueryExecutor simply checks each statement type passed in via the
collection of statement types. If a statement is a select statement then the constructor creates a
simple result set consisting of people’s names and adds it to m_Results. Otherwise, it creates
and adds a row count.

Modify the implementation to query the data source and store the results.

TODO #11: Provide parameter information (ULQueryExecutor.java).

ULQueryExecutor.getMetadataforParameters()is called by the ULQueryExecutor
constructor and handles any parameter information specified when the application calls
SQLPrepare. The default implementation shows how to register input, input/output, and
output-only parameters. Modify this method as required to register parameters appropriate for
your queries.

Note that this method’s logic will only be executed if the query contains a parameter and if the
hosting application doesn’t set SQL_ATTR_ENABLE_AUTO_IPD to false.

TODO #12: Implement Query Execution (ULQueryExecutor.cs).

The next step is to handle statement execution in ULQueryExecutor.execute(). The sample
implementation simply resets the results obtained in the constructor in preparation for the
application to retrieve them. If the executor is handling a parameterized statement, then
additional logic iterates through the input and copies it to the output for consumption by the
calling application.

In your implementation, the execute() method should begin by serializing parameters
(available using the getInputs() method of the contexts parameter) into a form that the data
source can consume. Once this has been done then the data source should be instructed to
execute the statement, after which the results should be stored using the getOutputs()field of
the contexts parameter.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 29

After this method exits, the calling framework will then obtain the results by invoking the
ULQueryExecutor.getResults() method.

Query Results

After a query has been executed, the query results are returned in an implementation of the
IResultSet interface. The DSISimpleResultSet class provides a partial implementation of
the interface to simplify the task of implementing a basic forward-only, read-only result set.

TODO #13: Implement your Result Set. (ULPersonTable.java)

The final step in returning data is to implement DSISimpleResultSet. The sample contains
an implementation called ULPersonTable which returns a hardcoded set of people’s names. In
general, your “table” class can represent the results of a query that may involve more than a
single table but for simplicity, this tutorial assumes a query involving a single table.

A DSISimpleResultSet implementation contains the data result from a query execution,
which the calling framework will use to access each row and column of data.

The implementation should maintain a handle to a cursor within the SQL-enabled data source
and delegate calls to the data source to move to the next row when the moveToNextRow()
method is called.

In the example, ULPersonTable.doMoveToNextRow() (which is invoked by moveToNextRow())
simply returns a boolean indicating whether or not the driver is on the last row of data, so this
should be replaced in your implementation with code that delegates this to the data source.

The getData() method is where column data is retrieved, so this should also be modified to
extract data from the data source.

The doCloseCursor()method should be implemented because it is called by SimbaEngine to
indicate that data retrieval has completed and that you may now perform any tasks related to
closing any associated result set in your data store.

Similarly, hasMoreRows() should be implemented to indicate if there are any more rows to fetch
after the current row.

On Linux and UNIX platforms, lists of catalogs, schemas, tables and types are available using
the qualifiers, owners, tables and types commands in the iodbctest utility.

Day Five
Today’s goal is to start productizing your driver. Additionally, you can also start localizing your
driver error messages. Refer to SimbaEngine Developer Guide for more details.

TODO #14: Register your error messages. (ULDriver.java)

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 30

For the purpose of prototyping, this TODO is purely informational. By default, the driver’s
messages.properties file resides in the same package as the ULDriver class. You can modify
the code to look in a different package location for the messages file or to customize the name
of the file.

TODO #15: Set the vendor name. (ULDriver.java)

All error messages returned by the driver begin with the vendor name. The default vendor name
is “Simba”. Simply uncomment the call to the setVendorName() method and replace
“vendorName” with an appropriate name for your organization. This will rebrand your converted
JavaUltraLight driver for your organization.

TODO #16: Update the component name. (UltraLight.java)

All error messages returned by your DSII contain the component name. Simply change
“UltraLightDSII” to a name relating to your driver. This will rebrand your converted
JavaUltraLight Driver for your organization.

TODO #17: Assign a unique component ID. (UltraLight.java)

For the purpose of prototyping, this TODO is purely informational. The default component ID is
usually sufficient for most drivers. The component ID is used to identify the component from
which an error has been generated so that the correct component name can be included in the
error message.

Create a driver configuration dialog
The driver configuration dialog is presented to the user when they use the ODBC Data Source
Administrator to create a new ODBC DSN or configure an existing one.

The C++ SimbaEngine UltraLight Driver project contains an example ODBC configuration dialog
that you can look at, as an example. You can find the source under the Setup folder within the
SimbaEngine UltraLight Driver project.

To see the driver configuration dialog that you created, run the ODBC Data Source
Administrator. To do this, open the Control Panel, select Administrative Tools, and then select
Data Sources (ODBC). If your Control Panel is set to view by category, then Administrative Tools
is located under System and Security.

IMPORTANT: If you are using 64-bit Windows with 32-bit applications, you must use the
32-bit ODBC Data Source Administrator. You cannot access the 32-bit ODBC Data Source
Administrator from the start menu or control panel in 64-bit Windows. Only the 64-bit ODBC
Data Source Administrator is accessible from the start menu or control panel. On 64-bit
Windows, to launch the 32-bit ODBC Data Source Administrator you must run
C:\WINDOWS\SysWOW64\odbcad32.exe. See Appendix A: ODBC Data Source
Administrator on Windows 32-Bit vs. 64-Bit on page 32 for details.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 31

On Linux and UNIX platforms, it is also possible to create a driver configuration dialog although
our UltraLight sample driver for those platforms does not include a sample implementation.

You are now done with all of the TODO’s in the project. You have created your own, custom
ODBC driver using SimbaEngine by modifying and customizing the JavaUltraLight sample
driver. Now, you have a read-only driver that connects to your data store.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 32

Appendix A: ODBC Data Source Administrator on
Windows 32-Bit vs. 64-Bit

On a 64-bit Windows system, you can execute 64-bit and 32-bit applications transparently,
which is a good thing, because most applications out there are still 32-bit. Microsoft Excel is one
of the few applications available in both 64-bit and 32-bit versions, so it is highly likely that you
will encounter 32-bit applications running on 64-bit systems.

It is important to understand that 64-bit applications can only load 64-bit drivers and 32-bit
applications can only load 32-bit drivers. In a single running process, all of the code must be
either 64-bit or 32-bit.

On a 64-bit Windows system, the ODBC Data Source Administrator that you access through the
Control Panel can only be used to configure data sources for 64-bit applications. However, the
32-bit version of the ODBC Data Source Administrator must be used to configure data sources
for 32-bit applications. This is the source of many confusing problems where what appears to
be a perfectly configured ODBC DSN does not work because it is loading the wrong kind of
driver.

PROBLEM: You cannot access the 32-bit ODBC Data Source Administrator from the start
menu or control panel in 64-bit Windows.

SOLUTION: To create new 32-bit data sources or modify existing ones on 64-bit Windows
you must run C:\WINDOWS\SysWOW64\odbcad32.exe (you may find it useful to put a
shortcut to this on your desktop or Start menu if you access it frequently).

Because of this, it is very important, when using 64-bit Windows, that you configure 32-bit and
64-bit drivers using the correct version of the ODBC Data Source Administrator for each.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 33

Appendix B: Windows Registry 32-Bit vs. 64-Bit
As noted previously, the 32-bit and 64-bit drivers must remain clearly separated because you
cannot use a 32-bit driver from a 64-bit application or vice versa. The 32-bit and 64-bit ODBC
drivers are installed and data source names are created in different areas of the registry:

32-Bit Drivers on 32-Bit Windows
The Data Source Names and Driver Locations that are relevant to the examples for this
document are detailed below.

Data Source Names

To connect your driver to your database, the 32-bit ODBC Driver Manager on 32-bit Windows
uses Data Source Name registry keys in HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBC.INI.
The keys that are relevant to the examples discussed in this document are:

• JavaUltraLightDSII which must include the following string values:
o Driver:

[INSTALL_DIRECTORY]\Examples\Builds\Bin\Win32\Release\UltraLightJNIDSI.
dll

o Description: Sample 32-bit SimbaEngine JavaUltraLight DSII

There is another registry key at the same location called ODBC Data Sources. String values
that correspond to each DSN/driver pair must also be added to it:

• ODBC Data Sources which must include the following string value:
o JavaUltraLightDSII: JavaUltraLightDSIIDriver

Driver Locations

To define each driver and its setup location, the 32-bit ODBC Driver Manager on 32-bit Windows
uses registry keys created in HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBCINST.INI. Each key
includes three string values to define the location of the Driver and its Description to help you
clearly identify each registry key. The keys that are relevant to the C# examples discussed in
this document are:

• JavaUltraLightDSIIDriver which includes the following key names and values:
o Driver:

[INSTALL_DIRECTORY]\Examples\Bin\Win32\Release\UltraLightJNIDSI.dll

o Description: Sample 32-bit SimbaEngine JavaUltraLight DSII

There is another registry key at the same location called ODBC Drivers, indicating which drivers
are installed. String values that correspond to each driver must also be added to it:

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 34

• ODBC Drivers which includes the following string value:
o JavaUltraLightDSIIDriver: Installed

32-Bit Drivers on 64-Bit Windows
The 32-bit applications and drivers use a section of the registry that is separate from the 64-bit
applications and drivers. Note that from the point of view of a 32-bit application on a 64-bit
machine, 32-bit data sources look exactly like they do on a 32-bit machine.

Data Source Names

To connect your driver to your database, the 32-bit ODBC Driver Manager on 64-bit Windows
uses Data Source Name registry keys in
HKEY_LOCAL_MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBC.INI. Each key includes string
values to define the location of the Driver and a Description to help you clearly identify each
registry key. The keys that are relevant to the examples discussed in this document are:

• JavaUltraLightDSII which must include the following string values:
o Driver:

[INSTALL_DIRECTORY]\Examples\Builds\Bin\Win32\Release\UltraLightJNIDSI.
dll

o Description: Sample 32-bit SimbaEngine JavaUltraLight DSII

There is another registry key at the same location called ODBC Data Sources. String values
that correspond to each DSN/driver pair must also be added to it:

• ODBC Data Sources which must include the following string values:
o JavaUltraLightDSII: JavaUltraLightDSIIDriver

Driver Locations

To define each driver and its setup location, the 32-bit ODBC Driver Manager on 64-bit Windows
uses registry keys created in
HKEY_LOCAL_MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBCINST.INI. Each key includes three
string values to define the location of the Driver and a Description to help you clearly identify
each registry key. The keys that are relevant to the examples discussed in this document are:

• JavaUltraLightDSIIDriver which includes the following key names and values:
o Driver:

[INSTALL_DIRECTORY]\Examples\Bin\Win32\Release\UltraLightJNIDSI.dll

o Description: Sample 32-bit SimbaEngine JavaUltraLight DSII

There is another registry key at the same location called ODBC Drivers, indicating which drivers
are installed. String values that correspond to each driver must also be added to it:

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 35

• ODBC Drivers which includes the following string value:
o JavaUltraLightDSIIDriver: Installed

64-Bit Drivers on 64-Bit Windows
The Data Source Names and Driver Locations that are relevant to the C# examples for this
document are detailed below.

Data Source Names

To connect your driver to your database, the 64-bit ODBC Driver Manager on 64-bit Windows
uses Data Source Name registry keys in HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBC.INI.
Each key includes three string values to define the location of the Driver and a Description to
help you clearly identify each registry key. The keys that are relevant to the examples discussed
in this document are:

• JavaUltraLightDSII which must include the following string values:
o Driver: [INSTALL_DIRECTORY]\Examples\Bin\x64\Release\UltraLightJNIDSI.dll

o Description: Sample 64-bit SimbaEngine JavaUltraLight DSII

There is another registry key at the same location called ODBC Data Sources. String values
that correspond to each DSN/driver pair must also be added to it:

• ODBC Data Sources which must include the following string values:
o JavaUltraLightDSII: JavaUltraLightDSIIDriver

Driver Locations

To define each driver and its setup location, the 64-bit ODBC Driver Manager on 64-bit Windows
uses registry keys created in HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBCINST.INI. Each key
includes three string values to define the location of the Driver and a Description to help you
clearly identify each registry key. The keys that are relevant to the examples discussed in this
document are:

• JavaUltraLightDSIIDriver which includes the following key names and values:
o Driver: [INSTALL_DIRECTORY]\Examples\Bin\x64\Release\UltraLightJNIDSI.dll

o Description: Sample 64-bit SimbaEngine JavaUltraLight DSII

There is another registry key at the same location called ODBC Drivers, indicating which drivers
are installed. String values that correspond to each driver must also be added to it:

• ODBC Drivers which includes the following string value:
o JavaUltraLightDSIIDriver: Installed

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 36

Appendix C: Data Retrieval
In the Data Store Interface (DSI), the following two methods perform the task of retrieving data
from your data store:

1. Each IMetadataSource implementation of getMetadata()

2. ULPersonTable's getData()

Both methods will provide a way to uniquely identify a column within the current row. For
IMetadataSource, the Simba SQL Engine will pass in a unique column tag (see
MetadataSourceColumnTag). For ULPersonTable, the Simba SQL Engine will pass in the
column index.

In addition, both methods accept the following three parameters:

1. data

The DataWrapper into which you must copy your cell’s value. This class is a wrapper
around an Object managed by the Simba SQL Engine. You simply call its set<Data
Type>() and get<Data Type>()methods to store and access the data according to the
java.sql.Type. The data you set must be represented as the object or primitive data type
that is accepted by the set methods for that java.sql.Type. If your data is not stored as the
appropriate type, you will need to write code to convert from your native format.

The type of this parameter is governed by the metadata for the column that is returned by
the class. Thus, if you create the TypeMetadata of column 1 in ULPersonTable’s
initializeColumns() as Types.INTEGER, then when ULPersonTable’s getData() is
called for column 1, you will be passed a DataWrapper that wraps a Long data type. For
IMetadataSource, the type is associated with the column tag (see
MetadataSourceColumnTag).

It is important to note that while Java does not natively support unsigned integer-types (i.e.
the types represented by TINYINT, SMALLINT, INTEGER), SimbaEngine allows for
unsigned data types to be retrieved through the C++ to Java bridge. By up-casting to a
larger signed type for each of the integer-types, unsigned values can be stored until they are
retrieved and converted to the correct unsigned SQL Type at the C++ end of the bridge. By
default, the TypeMetadata for the column is set to treat the integer-types as signed. To
enable unsigned data, you will need to call TypeMetadata‘s setSigned(false) when creating
the ColumnMetadata for the column in ULPersonTable’s initializeColumns().

2. offset

Character, wide character, and binary data types can be retrieved in parts. This value
specifies where, in the current column, the value should be copied from. The value is usually
0.

3. maxSize

The maximum size (in bytes) that can be copied into the data parameter. For character or

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 37

binary data, copying data that is greater than this size can result in a data truncation warning
or a heap-violation.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 38

Appendix D: Java Server Configuration
To establish a connection, the connection settings for the driver are normally retrieved directly
from the ODBC DSN. However, when the driver is a server, the settings cannot be retrieved
directly because the DSN refers to the client instead of a specific driver. In addition, there would
also be security concerns if a given client has control over server-specific settings. Therefore, to
establish a connection when a driver is a server, the connection settings need to be augmented.

IMPORTANT: The information in this section only applies if you are using 32-Bit Windows. If
you are using 64-bit Windows (with either 32-bit or 64-bit applications), the file paths must be
configured appropriately. Please see Appendix B: Windows Registry 32-Bit vs. 64-Bit on page
33 for details.

For the UltraLight sample driver, the registry entries under
HKEY_LOCAL_MACHINE/SOFTWARE/SIMBA/JAVAULTRALIGHT/SERVER are used to enable this
server-specific behavior. The settings augment the connection settings that are passed in
during a connection.

On Linux and UNIX platforms, the configuration entries are located in the
.simbaserver.javaultralight.ini file.

To set the JavaUltraLight sample driver up as a server, build the UltraLightJNIDSI solution using
a server configuration (i.e. Debug_Server or Release_Server). This will build the server
executable.

The rest of the server settings are located under sub-nodes of
HKEY_LOCAL_MACHINE/SOFTWARE/SIMBA/JAVAULTRALIGHT/SERVER. For full list of possible
server configuration parameters, please see the SimbaClientServer User Guide.

On Linux and UNIX platforms, to set the JavaUltraLight sample driver up as a server you need
to:

1. Build UltraLightJNIDSI using the debug (or release) server configuration:
 BUILDSERVER=exe make –f UltraLightJNIDSI.mak debug

2. Configure the server as required in the other sections of the .simbaserver.javaultralight.ini
file.

For further details on setting up a connection between a client and server, please see the
SimbaClientServer User Guide. Once you have configured the client and server, you should be
able to connect to your data source.

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 39

Third Party Licenses
ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Software without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

OpenSSL License

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young(eay@cryptsoft.com). This product includes software written by
Tim Hudson (tjh@cryptsoft.com).

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 40

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to
conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are aheared to. The following
conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL
documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a
product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual
message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

 "This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"

 The word 'cryptographic' can be left out if the rouines from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an
acknowledgement:

 "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code cannot be changed. i.e. this code
cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]

Expat License

"Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the ""Software""), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ""AS IS"", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NOINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."

Stringencoders License

Copyright 2005, 2006, 2007

SimbaEngine X version 10.1 Build a Java ODBC Driver for SQL-Based Data Sources in 5 Days

www.simba.com 41

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of the modp.com nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php

dtoa License

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire
notice is included in all copies of any software which is or includes a copy or modification of this software and in all copies of the
supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR,
NEITHER THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

	Copyright ©2015 Simba Technologies Inc. All Rights Reserved.
	Trademarks
	Contact Us
	Introduction
	About SimbaEngine
	About the JavaUltraLight sample driver
	Overview

	Day One – Windows Instructions
	Install SimbaEngine
	Components of the JavaUltraLight example driver
	Set environment variables
	Build the native C++ component (UltraLightJNIDSI)
	Build the Java component (JavaUltraLightDSII)
	Update the registry
	Examine the registry keys for SimbaEngine
	Test the data source
	Set up a new project to build your own ODBC driver
	Build the native C++ component
	Build the Java component
	Update the registry
	Test your new data source
	Testing the native (C++) project
	Debugging your Driver

	Day One – Linux Instructions
	Install SimbaEngine
	Components of the JavaUltraLight example driver
	Build the native C++ component (UltraLightJNIDSI)
	Build the Java component (JavaUltraLight)
	Configure the ODBC data source and ODBC driver
	Location of the ODBC configuration files
	Configure an ODBC data source
	Define an ODBC driver
	Configure the Simba JavaUltraLight ODBC Driver
	Enable Debugging

	Test the data source
	Build your new ODBC driver
	Configure an ODBC data source and ODBC driver
	Test your new data source

	Day Two
	Find or create the Java Virtual Machine
	Set the driver name
	Set the driver properties
	Set the logging details
	Check the connection settings
	Establish a connection

	Day Three
	Create and return metadata sources
	Handle TYPE_INFO
	Handle the other MetadataSources

	Day Four
	Query Preparation
	Query Execution
	Query Results

	Day Five
	Create a driver configuration dialog

	Appendix A: ODBC Data Source Administrator on Windows 32-Bit vs. 64-Bit
	Appendix B: Windows Registry 32-Bit vs. 64-Bit
	32-Bit Drivers on 32-Bit Windows
	Data Source Names
	Driver Locations

	32-Bit Drivers on 64-Bit Windows
	Data Source Names
	Driver Locations

	64-Bit Drivers on 64-Bit Windows
	Data Source Names
	Driver Locations

	Appendix C: Data Retrieval
	Appendix D: Java Server Configuration
	Third Party Licenses

